1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
skyechirnside3 edited this page 2025-02-18 12:48:10 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker . With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes support finding out to enhance reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential distinguishing feature is its reinforcement learning (RL) step, which was utilized to improve the model's actions beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, eventually boosting both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, meaning it's equipped to break down complex questions and factor through them in a detailed way. This directed thinking process enables the model to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation design that can be integrated into various workflows such as agents, ratemywifey.com sensible reasoning and data analysis tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, enabling effective inference by routing inquiries to the most relevant specialist "clusters." This approach permits the design to concentrate on various problem domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as a teacher design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and evaluate models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation increase, create a limitation increase demand and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent damaging material, and evaluate designs against essential safety criteria. You can carry out safety measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, gratisafhalen.be see the GitHub repo.

The general circulation includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the last outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pediascape.science select the DeepSeek-R1 model.

The model detail page provides essential details about the design's capabilities, prices structure, and implementation standards. You can find detailed usage guidelines, including sample API calls and code bits for combination. The model supports numerous text generation jobs, consisting of content creation, code generation, and question answering, using its reinforcement discovering optimization and CoT reasoning capabilities. The page likewise consists of deployment choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, choose Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a number of instances (between 1-100). 6. For example type, pick your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up sophisticated security and infrastructure settings, including virtual personal cloud (VPC) networking, service function authorizations, and encryption settings. For many use cases, the default settings will work well. However, for production implementations, you might wish to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the implementation is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive interface where you can experiment with different prompts and change model criteria like temperature and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For instance, material for inference.

This is an outstanding way to check out the design's thinking and text generation abilities before incorporating it into your applications. The play ground offers immediate feedback, trademarketclassifieds.com assisting you comprehend how the design reacts to different inputs and letting you fine-tune your prompts for optimum results.

You can rapidly test the model in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, trademarketclassifieds.com you require to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides two practical methods: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you choose the method that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design browser displays available models, with details like the company name and model capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows essential details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to view the design details page.

    The design details page includes the following details:

    - The model name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the model, it's recommended to evaluate the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, use the automatically generated name or develop a customized one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the variety of circumstances (default: 1). Selecting suitable instance types and counts is essential for cost and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment process can take numerous minutes to finish.

    When deployment is total, your endpoint status will change to InService. At this moment, the model is prepared to accept reasoning demands through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is complete, systemcheck-wiki.de you can invoke the design utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To prevent undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments.
  5. In the Managed implementations section, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop ingenious options using AWS services and sped up calculate. Currently, he is concentrated on developing methods for fine-tuning and optimizing the reasoning performance of big language models. In his spare time, Vivek takes pleasure in treking, enjoying films, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building options that assist consumers accelerate their AI journey and unlock service worth.